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ABSTRACT  
In this paper we introduce and study the concept g-binary δ-semi-continuity in g-binary topological spaces and 

investigate various relationships. 
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I. INTRODUCTION  
 

Levine [8] introduced semi open and semi continuous functions in topological spaces. Recently the authors [15] 

introduced the concept of binary topology between two sets and investigate some of the basic properties, where a 

binary topology from X to Y is a binary structure satisfying certain axioms that are analogous to the axioms of 

topology. In this paper we introduce and study g-binary δ-semi-continuity in g-binary topological spaces and 
investigate various relationships. Section 2 deals with the basic concepts of g-binary topological spaces. In section 3 

g-binary δ-semi-continuity in g-binary topological spaces are studied and established the relationships. Throughout 

the paper ℘ x  denotes the power set of x.  

 

II. PRELIMINARIES 
 

Definition 2.1: Let X and Y are any two non-empty sets. A g-binary topology from X to Y is a binary structure 

Mg ⊆ ℘ X × ℘(Y) that satisfies the following axioms: 

 ∅, ∅  and  X, X ∈ Mg  

 

If { Aα , Bα  ;  α ∈ ∆} is a family of members of Mg , then   Aαα∈∆  ,  Bαα∈∆  ∈ Mg  

If Mg  is a g-binary topology from X to Y, then the triplet (X, Y, Mg) is called a g-binary topological space and the 

members of Mg  are called the g-binary open subsets of the g-binary topological space (X, Y, Mg). The elements of 

X × Y are called the g-binary points (or g-binary sets) of g-binary topological space (X, Y, Mg).  

 

Definition 2.2: Let (X, Y, Mg) be a g-binary topological space and A ⊆ X, B ⊆ Y. Then  A, B  is g-binary closed in 

(X, Y, Mg) if (X\A, Y\B) ∈ Mg .  

 

Definition 2.3: In a g-binary topological space (X, Y, Mg) if  A, B ⊆  X, Y , then gbcl A, B  is smallest g-binary 

closed set containing (A, B). 

 

Proposition 2.1: Let  A, B ⊆  X, Y . Then  A, B  is g-binary closed in (X, Y, Mg) iff  A, B = gbcl A, B . 

 

Definition 2.4: In a g-binary topological space (X, Y, Mg) if  A, B ⊆  X, Y , then gbint A, B  is largest g-binary 

open set contained in (A, B). 
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Proposition 2.2: Let  A, B ⊆  X, Y . Then  A, B  is g-binary open in (X, Y, Mg) iff  A, B = gbint A, B . 
 

Definition 2.5: A subset (A, B) of a g-binary topological space (X, Y, Mg)  is called  

g-binary semi-open if (A, B) ⊆ gbcl(gbint A, B ). 

g-binary pre-open if (A, B) ⊆ gbint(gbcl A, B ). 

 

Definition 2.6: Let  Z, τ  be a g-topological space and (X, Y, Mg) be g-binary topological space. Then the function 

f: Z → X × Y is said to be  

g-binary continuous if f −1(A, B) is g-open in (Z, τ) for every g-binary open set (A, B) in (X, Y, Mg).  

g-binary semi-continuous if f −1(A, B) is g-semi-open in (Z, τ) for every g-binary open set (A, B) in (X, Y, Mg).  

g-binary pre-continuous if f −1(A, B) is g-pre-open in (Z, τ) for every g-binary open set (A, B) in (X, Y, Mg).  

 

Definition 2.7: Let (X, Y, Mg) be an g-binary topological space and  A, B  be a subset of ℘ X × ℘(Y), then 

gbclδ A, B = { x, y ∈ ℘ X × ℘ Y : gbint gbcl U, V  ⋂ A, B ≠ ∅,  U, V ∈ Mg  and  x, y ∈  U, V } 

 

III. G-BINARY 𝛅-SEMI-CONTINUOUS FUNCTIONS 
 

Definition 3.1: A subset (A, B) of a g-binary topological space (X, Y, Mg)  is called g-binary 𝛅-semi-open set if 

(A, B) ⊆ gbcl(gbintδ(A, B)).  
 

Definition 3.2: Let  Z, τ  be a g-topological space and (X, Y, Mg) be g-binary topological space. Then the function 

f: Z → X × Y is said to be g-binary 𝛅-semi-continuous if f −1(A, B) is g-𝛅-semi-open in (Z, τ) for every g-binary open 

set (A, B) in (X, Y, Mg).  

 

Example 3.1: Let Z =  1, 2, 3 , X =  a1 , a2  and  Y =  b1 , b2 .Then τ =  ∅,  1,2 ,  2,3 , Z     and   Mg = { ∅, ∅ ,
  a2 ,  b2  ,   a1 ,  Y  ,  X, Y }. Clearly τ is a g-topology on Z and Mg  is g-binary topology from X to Y. Define 

f: Z → X × Y by f 1 =  a2 , b2 =  f 3  and  f 2 =  a1 , b1 .  Now f −1 ∅, ∅ = ∅, f −1( a2 ,  b2 ) = {1,3}, 

f −1( a1 ,  Y ) = {2}  and f −1 X, Y = Z. This shows that the inverse image of every g-binary open set in (X, Y, Mg) 

is g-𝛅-semi-open in  Z, τ . Hence f is g-binary δ-semi-continuous.  
 

Remark 3.1: The concepts of g-binary continuity and g-binary 𝛅-semi-continuity in g-binary topology are 

independent as shown in Example 3.2 and Example 3.3. 

 

Example 3.2: Let Z =  1, 2, 3 , X =  a1 , a2  and  Y =  b1 , b2 .Then τ = {∅,  1 ,  1,2 ,  2,3 , Z}    and   Mg =

{ ∅, ∅ ,   a1 ,  b1  ,   a2 ,  Y  ,  X, Y }. Clearly τ is a g-topology on Z and Mg  is g-binary topology from X to Y. 

Define f: Z → X × Y by  f 1 =  a1 , b1  and f 2 = f 3 =  a2, b2  Now f −1 ∅, ∅ = ∅, f −1( a1 ,  b1 ) = {1}, 

f −1( a2 ,  Y ) = {2,3}  and f −1 X, Y = Z. This shows that the inverse image of every g-binary open set in 

(X, Y, Mg) is g-open in  Z, τ . Hence f is g-binary continuous but not g-binary δ-semi-continuous because the set {1} 

is g-open in  Z, τ  but not g-δ-semi-open.   

 

Example 3.3: In Example 3.1 f is g-binary δ-semi-continuous but not g-binary continuous because the set  1,3  is g-

δ-semi-open in  Z, τ  but not g-open. 

 

Definition 3.3: Let  Z, τ  be a g-topological space and (X, Y, Mg) be g-binary topological space. Then the function 

f: Z → X × Y is called totally g-binary continuous if  f −1 A, B  is g-clopen in  Z, τ  for every g-binary open set (A, B) 

in (X, Y, Mg).  
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Definition 3.4: Let  Z, τ  be a g-topological space and (X, Y, Mg) be g-binary topological space. Then the function 

f: Z → X × Y is called totally g-binary δ-semi-continuous if  f −1 A, B  is g-δ-semi-clopen in  Z, τ  for every g-binary 

open set (A, B) in (X, Y, Mg).  

 

Example 3.4: Let Z =  1, 2, 3 , X =  a1 , a2  and  Y =  b1 , b2 . Then τ =  ∅,  1 ,  1,2 ,  2,3 , Z  and Mg =

  ∅, ∅ ,   a1 ,  b1  ,   a2 ,  Y  ,  X, Y  . Clearly τ is a g-topology on Z and Mg  is g-binary topology from X to Y.  

 

Define f: Z → X × Y by f 1 =  a1 , b1 = f 2  and f 3 =  a2, b2 . Now f −1 ∅, ∅ = ∅, f −1( a1 ,  b1 ) = {1,2},  

f −1( a2 ,  Y ) = {3} and  f −1 X, Y = Z. This shows that the inverse image of every g-binary open set in (X, Y, Mg) 

is g-δ-semi-clopen in  Z, τ . Hence f is totally g-binary δ-semi-continuous.  

 

Remark 3.2: The concepts of totally g-binary continuity and totally g-binary δ-semi-continuity in g-binary topology 
are independent as shown in Example 3.5 and Example 3.6. 

 

Example 3.5: Let Z =  1, 2, 3 , X =  a1 , a2  and  Y =  b1 , b2 . Then τ =  ∅,  1 ,  1,2 ,  2,3 , Z  and Mg =

  ∅, ∅ ,   a1 ,  b1  ,   a2 ,  Y  ,  X, Y  . Clearly τ is a g-topology on Z and Mg  is g-binary topology from X to Y.  

 

Define f: Z → X × Y by f 1 =  a1 , b1  and f 2 =  a2 , b2 = f 3 . Now f −1 ∅, ∅ = ∅, f −1( a1 ,  b1 ) = {1},  

f −1( a1 ,  Y ) = {1}, f −1( a2 ,  Y ) = {2,3} and f −1 X, Y = Z. This shows that the inverse image of every g-binary 

open set in (X, Y, Mg) is g-clopen in  Z, τ . Hence f is totally g-binary continuous but not totally g-binary δ-semi-

continuous because the set {2,3} is g-clopen in  Z, τ  but not g-δ-semi-clopen.  

 

Example 3.6: In Example 3.4 f is totally g-binary δ-semi-continuous but not totally g-binary continuous because the 

set  1,2  is g-δ-semi-clopen in  Z, τ  but not g-clopen. 

 

Definition 3.5: Let  Z, τ  be a g-topological space and (X, Y, Mg) be g-binary topological space. Then the function 

f: Z → X × Y is called strongly g-binary continuous if  f −1 A, B  is g-clopen in  Z, τ  for every g-binary set (A, B) in 

(X, Y, Mg).  

 

Definition 3.6: Let  𝑍, 𝜏  be a g-topological space and (𝑋, 𝑌, 𝑀𝑔) be g-binary topological space. Then the 

function 𝑓:𝑍 → 𝑋 × 𝑌 is called strongly g-binary 𝛿-semi-continuous if  f −1 A, B  is g-δ-semi-clopen in 
 Z, τ  for every g-binary set (A, B) in (X, Y, Mg).  

 

Example 3.7: Let Z =  1,2,3 , X =  a1 , a2  and  Y =  b1, b2 . Then τ =  ∅,  1 ,  1,2 ,  2,3 , Z  and 

Mg =   ∅,∅ ,   a1 ,  b1  ,   a2 ,  Y  ,  X, Y  . Clearly τ is a g-topology on Z and Mg  is g-binary 

topology from X to Y. Define f: Z → X × Y by f 1 =  a1 , b1 =  f 2  and f 3 =  a2, b2 .  Now 

f −1 ∅, ∅ = ∅, f −1( a1 ,  b1 ) = {1,2}, f −1( a1 ,  Y ) = {1,2}, f −1  a2 ,  Y  =  3 , f −1( ∅ ,  b1 ) =
{∅}, f −1  ∅ ,  b2  =  ∅ , f −1  ∅ ,  Y  =  ∅ , f −1( a1 ,  ∅ ) = {∅}, f −1( a1 ,   b2 ) = {∅}, 

f −1( a2 , ∅) = {∅}, f −1( a2 ,  b1 ) = {∅}, f −1( a2 ,   b2 ) = {3}, f −1( X , {∅}) = {∅}, f −1( X , {b1}) =
{1,2}, f −1( X , {b2}) = {3}  and f −1 X, Y = Z. This shows that the inverse image of every g-binary set in 

(X, Y, Mg) is g-δ-semi-clopen in  Z, τ . Hence f is strongly g-binary δ-semi-continuous.  

 

Remark 3.3: The concepts of strongly g-binary continuity and strongly g-binary 𝛿-semi-continuity in g-

binary topology are independent as shown in Example 3.8 and Example 3.9. 

 

Example 3.8: Let Z =  1,2,3 , X =  a1 , a2  and  Y =  b1, b2 . Then τ =  ∅,  1 ,  1,2 ,  2,3 , Z  and 

Mg =   ∅,∅ ,   a1 ,  b1  ,   a2 ,  Y  ,  X, Y  . Clearly τ is a g-topology on Z and Mg  is g-binary 

topology from X to Y. Define f: Z → X × Y by f 1 =  a1 , b2  and f 2 =  a2 , b2 = f 3 . Now 
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f −1 ∅, ∅ = ∅, f −1( a1 ,  b1 ) = {∅}, f −1( a1 ,  Y ) = {1}, f −1  a2 ,  Y  =  2,3 , f −1( ∅ ,  b1 ) =
{∅}, f −1  ∅ ,  b2  =  ∅ , f −1  ∅ ,  Y  =  ∅ , f −1( a1 ,  ∅ ) = {∅}, f −1( a1 ,   b2 ) = {1}, , 

f −1( a2 , ∅) = {∅}, f −1( a2 ,  b1 ) = {∅}, f −1( a2 ,   b2 ) = {2, 3}, f −1( X , {∅}) = {∅}, 

f −1( X , {b1}) = {1}, f −1( X , {b2}) = {2,3}  and f −1 X, Y = Z. This shows that the inverse image of 

every g-binary set in (X, Y, Mg) is g-clopen in  Z, τ . Hence f is strongly g-binary continuous but not 

strongly g-binary δ-semi-continuous because f −1( a1 ,   b2 ) = {1}, where {1} is g-clopen in  Z, τ  but 

not g-δ-semi-clopen.   

 

Example 3.9: In Example 3.7 f is strongly g-binary δ-semi-continuous but not strongly g-binary 

continuous because the set  1,2  is g-δ-semi-clopen in  Z, τ  but not g-clopen. 
From the above discussion we have the following result: 

g-binary continuous  ⇎ g-binary δ-semi-continuous 

Totally g-binary continuous ⇎ totally g-binary δ-semi-continuous 

Strongly g-binary continuous  ⇎ strongly g-binary δ-semi-continuous 
 

IV. CONCLUSION 
 

The concept of g-binary δ-semi-continuity in g-binary topological spaces is introduced and studied. Further different 

relationships between these functions are investigated. 
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