

GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES g-BINARY δ -SEMI-CONTINUOUS FUNCTIONS IN g-BINARY TOPOLOGICAL SPACES

Nazir Ahmad Ahengar*1 & J.K. Maitra²

^{*1&2}Department of Mathematics and Computer Sciences R.D.V.V Jabalpur 482001 (M.P) India

ABSTRACT

In this paper we introduce and study the concept g-binary δ -semi-continuity in g-binary topological spaces and investigate various relationships.

Keywords: g-binary open sets, g-binary semi-open sets, g-binary pre-open sets, g-binary δ -semi-continuous, totally g-binary δ -semi-continuous, strongly g-binary δ -semi-continuous functions.

I. INTRODUCTION

Levine [8] introduced semi open and semi continuous functions in topological spaces. Recently the authors [15] introduced the concept of binary topology between two sets and investigate some of the basic properties, where a binary topology from X to Y is a binary structure satisfying certain axioms that are analogous to the axioms of topology. In this paper we introduce and study g-binary δ -semi-continuity in g-binary topological spaces and investigate various relationships. Section 2 deals with the basic concepts of g-binary topological spaces. In section 3 g-binary δ -semi-continuity in g-binary topological spaces are studied and established the relationships. Throughout the paper $\wp(x)$ denotes the power set of x.

II. PRELIMINARIES

Definition 2.1: Let X and Y are any two non-empty sets. A g-binary topology from X to Y is a binary structure $M_g \subseteq \wp(X) \times \wp(Y)$ that satisfies the following axioms: (\emptyset, \emptyset) and $(X, X) \in M_g$

If {(A_{α} , B_{α}); $\alpha \in \Delta$ } is a family of members of M_g , then ($\bigcup_{\alpha \in \Delta} A_{\alpha}$, $\bigcup_{\alpha \in \Delta} B_{\alpha}$) $\in M_g$ If M_g is a g-binary topology from X to Y, then the triplet (X, Y, M_g) is called a g-binary topological space and the members of M_g are called the g-binary open subsets of the g-binary topological space (X, Y, M_g). The elements of X × Y are called the g-binary points (or g-binary sets) of g-binary topological space (X, Y, M_g).

Definition 2.2: Let (X, Y, M_g) be a g-binary topological space and $A \subseteq X, B \subseteq Y$. Then (A, B) is g-binary closed in (X, Y, M_g) if $(X \setminus A, Y \setminus B) \in M_g$.

Definition 2.3: In a g-binary topological space (X, Y, M_g) if $(A, B) \subseteq (X, Y)$, then gbcl(A, B) is smallest g-binary closed set containing (A, B).

Proposition 2.1: Let $(A, B) \subseteq (X, Y)$. Then (A, B) is g-binary closed in (X, Y, M_g) iff (A, B) = gbcl(A, B).

Definition 2.4: In a g-binary topological space (X, Y, M_g) if $(A, B) \subseteq (X, Y)$, then gbint(A, B) is largest g-binary open set contained in (A, B).

(C)Global Journal Of Engineering Science And Researches

ISSN 2348 – 8034 Impact Factor- 5.070

Proposition 2.2: Let $(A, B) \subseteq (X, Y)$. Then (A, B) is g-binary open in (X, Y, M_g) iff (A, B) = gbint(A, B).

Definition 2.5: A subset (A, B) of a g-binary topological space (X, Y, M_g) is called g-binary semi-open if $(A, B) \subseteq gbcl(gbint(A, B))$. g-binary pre-open if $(A, B) \subseteq gbint(gbcl(A, B))$.

Definition 2.6: Let (Z, τ) be a g-topological space and (X, Y, M_g) be g-binary topological space. Then the function f: $Z \to X \times Y$ is said to be

g-binary continuous if $f^{-1}(A, B)$ is g-open in (Z, τ) for every g-binary open set (A, B) in (X, Y, M_g) . g-binary semi-continuous if $f^{-1}(A, B)$ is g-semi-open in (Z, τ) for every g-binary open set (A, B) in (X, Y, M_g) . g-binary pre-continuous if $f^{-1}(A, B)$ is g-pre-open in (Z, τ) for every g-binary open set (A, B) in (X, Y, M_g) .

Definition 2.7: Let (X, Y, M_g) be an g-binary topological space and (A, B) be a subset of $\mathscr{P}(X) \times \mathscr{P}(Y)$, then $gbcl_{\delta}(A, B) = \{(x, y) \in \mathscr{P}(X) \times \mathscr{P}(Y): gbint(gbcl(U, V)) \cap (A, B) \neq \emptyset, (U, V) \in M_g \text{ and } (x, y) \in (U, V)\}$

ΙΙΙ. G-BINARY δ-SEMI-CONTINUOUS FUNCTIONS

Definition 3.1: A subset (A, B) of a g-binary topological space (X, Y, M_g) is called g-binary δ -semi-open set if $(A, B) \subseteq \text{gbcl}(\text{gbint}_{\delta}(A, B))$.

Definition 3.2: Let (Z, τ) be a g-topological space and (X, Y, M_g) be g-binary topological space. Then the function $f: Z \to X \times Y$ is said to be g-binary δ -semi-continuous if $f^{-1}(A, B)$ is g- δ -semi-open in (Z, τ) for every g-binary open set (A, B) in (X, Y, M_g) .

Example 3.1: Let $Z = \{1, 2, 3\}, X = \{a_1, a_2\}$ and $Y = \{b_1, b_2\}$. Then $\tau = \{\emptyset, \{1, 2\}, \{2, 3\}, Z\}$ and $M_g = \{(\emptyset, \emptyset), (\{a_2\}, \{b_2\}), (\{a_1\}, \{Y\}), (X, Y)\}$. Clearly τ is a g-topology on Z and M_g is g-binary topology from X to Y. Define f: $Z \to X \times Y$ by $f(1) = (a_2, b_2) = f(3)$ and $f(2) = (a_1, b_1)$. Now $f^{-1}(\emptyset, \emptyset) = \emptyset, f^{-1}(\{a_2\}, \{b_2\}) = \{1, 3\}, f^{-1}(\{a_1\}, \{Y\}) = \{2\}$ and $f^{-1}(X, Y) = Z$. This shows that the inverse image of every g-binary open set in (X, Y, M_g) is g- δ -semi-open in (Z, τ) . Hence f is g-binary δ -semi-continuous.

Remark 3.1: The concepts of g-binary continuity and g-binary δ -semi-continuity in g-binary topology are independent as shown in Example 3.2 and Example 3.3.

Example 3.2: Let $Z = \{1, 2, 3\}$, $X = \{a_1, a_2\}$ and $Y = \{b_1, b_2\}$. Then $\tau = \{\emptyset, \{1\}, \{1, 2\}, \{2, 3\}, Z\}$ and $M_g = \{(\emptyset, \emptyset), (\{a_1\}, \{b_1\}), (\{a_2\}, \{Y\}), (X, Y)\}$. Clearly τ is a g-topology on Z and M_g is g-binary topology from X to Y. Define $f: Z \to X \times Y$ by $f(1) = (a_1, b_1)$ and $f(2) = f(3) = (a_2, b_2)$ Now $f^{-1}(\emptyset, \emptyset) = \emptyset$, $f^{-1}(\{a_1\}, \{b_1\}) = \{1\}$, $f^{-1}(\{a_2\}, \{Y\}) = \{2,3\}$ and $f^{-1}(X, Y) = Z$. This shows that the inverse image of every g-binary open set in (X, Y, M_g) is g-open in (Z, τ) . Hence f is g-binary continuous but not g-binary δ -semi-continuous because the set $\{1\}$ is g-open in (Z, τ) but not g- δ -semi-open.

Example 3.3: In Example 3.1 f is g-binary δ -semi-continuous but not g-binary continuous because the set {1,3} is g- δ -semi-open in (Z, τ) but not g-open.

Definition 3.3: Let (Z, τ) be a g-topological space and (X, Y, M_g) be g-binary topological space. Then the function f: $Z \rightarrow X \times Y$ is called totally g-binary continuous if $f^{-1}(A, B)$ is g-clopen in (Z, τ) for every g-binary open set (A, B) in (X, Y, M_g) .

ISSN 2348 - 8034 Impact Factor- 5.070

Definition 3.4: Let (Z, τ) be a g-topological space and (X, Y, M_g) be g-binary topological space. Then the function f: $Z \to X \times Y$ is called totally g-binary δ -semi-continuous if $f^{-1}(A, B)$ is g- δ -semi-clopen in (Z, τ) for every g-binary open set (A, B) in (X, Y, M_g) .

Example 3.4: Let $Z = \{1, 2, 3\}, X = \{a_1, a_2\}$ and $Y = \{b_1, b_2\}$. Then $\tau = \{\emptyset, \{1\}, \{1, 2\}, \{2, 3\}, Z\}$ and $M_g = \{(\emptyset, \emptyset), (\{a_1\}, \{b_1\}), (\{a_2\}, \{Y\}), (X, Y)\}$. Clearly τ is a g-topology on Z and M_g is g-binary topology from X to Y.

Define $f: Z \to X \times Y$ by $f(1) = (a_1, b_1) = f(2)$ and $f(3) = (a_2, b_2)$. Now $f^{-1}(\emptyset, \emptyset) = \emptyset$, $f^{-1}(\{a_1\}, \{b_1\}) = \{1, 2\}$, $f^{-1}(\{a_2\}, \{Y\}) = \{3\}$ and $f^{-1}(X, Y) = Z$. This shows that the inverse image of every g-binary open set in (X, Y, M_g) is g- δ -semi-clopen in (Z, τ) . Hence f is totally g-binary δ -semi-continuous.

Remark 3.2: The concepts of totally g-binary continuity and totally g-binary δ -semi-continuity in g-binary topology are independent as shown in Example 3.5 and Example 3.6.

Example 3.5: Let $Z = \{1, 2, 3\}, X = \{a_1, a_2\}$ and $Y = \{b_1, b_2\}$. Then $\tau = \{\emptyset, \{1\}, \{1, 2\}, \{2, 3\}, Z\}$ and $M_g = \{(\emptyset, \emptyset), (\{a_1\}, \{b_1\}), (\{a_2\}, \{Y\}), (X, Y)\}$. Clearly τ is a g-topology on Z and M_g is g-binary topology from X to Y.

Define $f: Z \to X \times Y$ by $f(1) = (a_1, b_1)$ and $f(2) = (a_2, b_2) = f(3)$. Now $f^{-1}(\emptyset, \emptyset) = \emptyset$, $f^{-1}(\{a_1\}, \{b_1\}) = \{1\}$, $f^{-1}(\{a_1\}, \{Y\}) = \{1\}, f^{-1}(\{a_2\}, \{Y\}) = \{2,3\}$ and $f^{-1}(X, Y) = Z$. This shows that the inverse image of every g-binary open set in (X, Y, M_g) is g-clopen in (Z, τ) . Hence f is totally g-binary continuous but not totally g-binary δ -semicontinuous because the set $\{2,3\}$ is g-clopen in (Z, τ) but not $g-\delta$ -semi-clopen.

Example 3.6: In Example 3.4 f is totally g-binary δ -semi-continuous but not totally g-binary continuous because the set {1,2} is g- δ -semi-clopen in (Z, τ) but not g-clopen.

Definition 3.5: Let (Z, τ) be a g-topological space and (X, Y, M_g) be g-binary topological space. Then the function $f: Z \to X \times Y$ is called strongly g-binary continuous if $f^{-1}(A, B)$ is g-clopen in (Z, τ) for every g-binary set (A, B) in (X, Y, M_g) .

Definition 3.6: Let (Z, τ) be a g-topological space and (X, Y, M_g) be g-binary topological space. Then the function $f: Z \to X \times Y$ is called strongly g-binary δ -semi-continuous if $f^{-1}(A, B)$ is g- δ -semi-clopen in (Z, τ) for every g-binary set (A, B) in (X, Y, M_g) .

Example 3.7: Let $Z = \{1,2,3\}, X = \{a_1,a_2\}$ and $Y = \{b_1,b_2\}$. Then $\tau = \{\emptyset,\{1\},\{1,2\},\{2,3\},Z\}$ and $M_g = \{(\emptyset,\emptyset), (\{a_1\},\{b_1\}), (\{a_2\},\{Y\}), (X,Y)\}$. Clearly τ is a g-topology on Z and M_g is g-binary topology from X to Y. Define $f: Z \to X \times Y$ by $f(1) = (a_1,b_1) = f(2)$ and $f(3) = (a_2,b_2)$. Now $f^{-1}(\emptyset,\emptyset) = \emptyset, f^{-1}(\{a_1\},\{b_1\}) = \{1,2\}, f^{-1}(\{a_1\},\{Y\}) = \{1,2\}, f^{-1}(\{a_2\},\{Y\}) = \{3\}, f^{-1}(\{\emptyset\},\{b_1\}) = \{\emptyset\}, f^{-1}(\{\{a_2\},\{Y\}) = \{\emptyset\}, f^{-1}(\{\{a_2\},\{0\}) = \{\emptyset\}, f^{-1}(\{\{a_2\},\{b_1\}) = \{\emptyset\}, f^{-1}(\{\{a_2\},\{b_1\}) = \{\emptyset\}, f^{-1}(\{\{x\},\{b_2\}) = \{\{0\}, f^{-1}(\{X\},\{b_2\}) = \{\{0\}, f^{-1}(\{X\},\{b_1\}) = \{\{1,2\}, f^{-1}(\{X\},\{b_2\}) = \{\{1,2\}, f^{-1}(\{X\},\{b_1\}) = \{1,2\}, f^{-1}(\{X\},\{b_2\}) = \{\{1,2\}, f^{-1}(\{X\},\{b_2\}) =$

Remark 3.3: The concepts of strongly g-binary continuity and strongly g-binary δ -semi-continuity in g-binary topology are independent as shown in Example 3.8 and Example 3.9.

Example 3.8: Let $Z = \{1,2,3\}, X = \{a_1,a_2\}$ and $Y = \{b_1,b_2\}$. Then $\tau = \{\emptyset,\{1\},\{1,2\},\{2,3\},Z\}$ and $M_g = \{(\emptyset,\emptyset), (\{a_1\},\{b_1\}), (\{a_2\},\{Y\}), (X,Y)\}$. Clearly τ is a g-topology on Z and M_g is g-binary topology from X to Y. Define $f: Z \to X \times Y$ by $f(1) = (a_1,b_2)$ and $f(2) = (a_2,b_2) = f(3)$. Now

315

ISSN 2348 - 8034 Impact Factor- 5.070

f⁻¹(\emptyset , \emptyset) = \emptyset , f⁻¹({a₁}, {b₁}) = { \emptyset }, f⁻¹({a₁}, {Y}) = {1}, f⁻¹({a₂}, {Y}) = {2,3}, f⁻¹({ \emptyset }, {b₁}) = { \emptyset }, f⁻¹({ \emptyset }, {b₂}) = { \emptyset }, f⁻¹({ \emptyset }, {Y}) = { \emptyset }, f⁻¹({a₁}, { \emptyset }) = { \emptyset }, f⁻¹({a₁}, {b₂}) = {1}, , f⁻¹({a₂}, { \emptyset }) = { \emptyset }, f⁻¹({a₂}, { \emptyset }) = { \emptyset }, f⁻¹({a₂}, { b_2 }) = {2,3}, f⁻¹({X}, { \emptyset }) = { \emptyset }, f⁻¹({X}, { \emptyset }) = { \emptyset }, f⁻¹({X}, { b_2 }) = {1}, f⁻¹({X}, { \emptyset }) = { \emptyset }, f⁻¹({X}, { b_2 }) = {1}, f⁻¹({X}, { \emptyset }) = { \emptyset }, f⁻¹({X}, { b_2 }) = {1}, f⁻¹({X}, { \emptyset }) = { \emptyset }, f⁻¹({X}, { b_2 }) = {1}, f⁻¹({X}, { b_2 }) = {2,3} and f⁻¹(X, Y) = Z. This shows that the inverse image of every g-binary set in (X, Y, M_g) is g-clopen in (Z, τ). Hence f is strongly g-binary continuous but not strongly g-binary δ -semi-continuous because f⁻¹({ a_1 }, { b_2 }) = {1}, where {1} is g-clopen in (Z, τ) but not g- δ -semi-clopen.

Example 3.9: In Example 3.7 f is strongly g-binary δ -semi-continuous but not strongly g-binary continuous because the set {1,2} is g- δ -semi-clopen in (Z, τ) but not g-clopen.

From the above discussion we have the following result:

g-binary continuous \Leftrightarrow g-binary δ -semi-continuous

Totally g-binary continuous \Leftrightarrow totally g-binary δ -semi-continuous

Strongly g-binary continuous \Leftrightarrow strongly g-binary δ -semi-continuous

IV. CONCLUSION

The concept of g-binary δ -semi-continuity in g-binary topological spaces is introduced and studied. Further different relationships between these functions are investigated.

REFERENCES

- 1. Michael, F, On semi-open sets with respect to an ideal, Eur. J. Pure Appl. Math, 06, 2013 pp 53 58.
- 2. Nazir Ahmad Ahengar and J.K. Maitra, On g-binary continuity, Journal of Emerging Technologies and Inovative Research (JETIR), 5(7), 2018, pp 240-244.
- 3. Nazir Ahmad Ahengar and J.K. Maitra, On g-binary semi continuous functions Accepted in (IJCER).
- 4. Nazir Ahmad Ahengar and J.K. Maitra, g*-binary regular closed and open sets in g-binary topological spaces, Accepted in (JETIR).
- 5. Nazir Ahmad Ahengar and J.K. Maitra, Semi-totally g-binary continuous functions in g-binary topology, Accepted in (IJCSE).
- 6. Njastad, O, On some classes of nearly open sets, Pacific J. Math 15, 1965, pp961 –970.
- 7. Norman Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2), 1969 pp 89-96.
- 8. Norman Levine, Semi open sets and semi continuity in topological spaces, Amer.Math.Monthly.70, 1963 pp36-41.
- 9. Norman Levine, Generalized closed sets in Topology, Rend. Cir. Mat. Palermo 02, 1970 pp 89-96.
- 10. Rodyna A. Hosny and Deena Al-Kadi, Types of Generalized Open Sets with Ideal, International Journal of Computer Applications, 80(4), 2013, pp 0975-8887.
- 11. Rodyna A. Hosny, Pre-open sets with ideal, European Journal of Scientific Research, 104 (1), 2013 pp 99 101.
- 12. R. Devi, K. Balachandran and H. Maki, Semi-generalized closed maps and generalized semi-closed maps, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 14, 1993, pp 41-54.
- 13. Ryszard Engelking Generel Topology, Polish Scientific Publishers, Warszawa (1977).
- 14. S. Nithyanantha Jothi and P.Thangavelu, Generalized binary closed sets in binary topological spaces, Ultra Scientist of Physical Sciences Vol., 26(1), 2014 pp 25-30.
- 15. .S. Nithyanantha Jothi and P.Thangavelu, Topology between two sets, Journal of Mathematical Sciences & Computer Applications, 1(3), 2011 pp 95-107 (2011).
- 16. S. Nithyanantha Jothi and P.Thangavelu, On binary topological spaces, Pacific-Asian Journal Of Mathematics 5(2), 2011 pp 133-138.
- 17. S. Nithyanantha Jothi and P.Thangavelu, On binary continuity and binary separation axioms, Ultra Scientist of Physical Sciences Vol., 24(1) 2012 pp 121-126.
- 18. S. Nithyanantha Jothi, Binary semi continuous functions, International Journal of Mathematics Trends and

(C)Global Journal Of Engineering Science And Researches

Technology (IJMTI) 49(2), 2017 pp 152-155.

- 19. S. S. Benchalli and Umadevi I Neeli "Semi-Totally Continuous Functions in Topological Spaces" International Mathematical Forum 6(10), 2011, pp 479-492.
- 20. T. M. Nour, Totally semi-continuous functions, Indian J. Pure Appl.Math, 26(7), 1995, pp675-678.

ISSN 2348 - 8034 Impact Factor- 5.070